The variational principle of fixed point theorems in certain fuzzy topological spaces

نویسندگان

  • Pagavathigounder Balasubramaniam
  • S. Muralisankar
چکیده

General topology can be regarded as a special case of fuzzy topology where all membership functions in question take values 0 and 1 only. The usual fuzzy metric spaces, fuzzy Hausdorff topological vector spaces, and Menger probabilistic metric spaces are all the special cases of F-type fuzzy topological spaces. Therefore, one would expect weaker results in the case of fuzzy topology. Recently several metric space fixed point theorems were extended to fuzzy topological spaces. Many authors introduced the concept of fuzzy metric spaces in different ways (see [4, 5, 11]). Grabiec [5] proved the contraction principle in the setting of fuzzy metric spaces introduced by Kramosil and Michalek [7]. The famous Ekeland's variational principle and Caristi's fixed point theorem are forceful tools in nonlinear analysis, control theory, economic theory and global analysis for details (see [1, 2, 3]). In this paper, we establish a variational principle and Caristi's fixed point theorem in F-type fuzzy topological spaces and utilize the results to obtain a fixed point theorem for Menger probabilistic metric spaces. Our results generalize the previous results of [1, 2, 3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Point Theorems for semi $lambda$-subadmissible Contractions in b-Metric spaces

Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.

متن کامل

Non-Archimedean fuzzy metric spaces and Best proximity point theorems

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...

متن کامل

Auxiliary Principle and Fuzzy Variational-like Inequalities

The purpose of this paper is to introduce the concept of fuzzy variational-like inequalities and to study the existence problem and the iterative approximation problem for solutions of certain kinds of fuzzy variational-like inequalities in Hilbert spaces. By using the general auxiliary principle technique, Ky Fan’s KKM theorem, Nadler’s fixed point theorem, and some new analytic techniques, so...

متن کامل

Critical Point Theorems for Nonlinear Dynamical Systems and Their Applications

We present some new critical point theorems for nonlinear dynamical systems which are generalizations of Dancš-Hegedüs-Medvegyev’s principle in uniform spaces and metric spaces by applying an abstract maximal element principle established by Lin and Du. We establish some generalizations of Ekeland’s variational principle, Caristi’s common fixed point theorem for multivalued maps, Takahashi’s no...

متن کامل

Fixed Point Theorems For Weak Contractions in Dualistic Partial Metric Spaces

In this paper, we describe some topological properties of dualistic partial metric spaces and establish some fixed point theorems for weak contraction mappings of rational type defined on dual partial metric spaces. These results are generalizations of some existing results in the literature. Moreover, we present examples to illustrate our result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Kybernetika

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2001